433 research outputs found

    Prelimbic cortex maintains attention to category-relevant information and flexibly updates category representations

    Get PDF
    Category learning groups stimuli according to similarity or function. This involves finding and attending to stimulus features that reliably inform category membership. Although many of the neural mechanisms underlying categorization remain elusive, models of human category learning posit that prefrontal cortex plays a substantial role. Here, we investigated the role of the prelimbic cortex (PL) in rat visual category learning by administering excitotoxic lesions before category training and then evaluating the effects of the lesions with computational modeling. Using a touchscreen apparatus, rats (female and male) learned to categorize distributions of category stimuli that varied along two continuous dimensions. For some rats, categorizing the stimuli encouraged selective attention towards a single stimulus dimension (i.e., 1D tasks). For other rats, categorizing the stimuli required divided attention towards both stimulus dimensions (i.e., 2D tasks). Testing sessions then examined generalization to novel exemplars. PL lesions impaired learning and generalization for the 1D tasks, but not the 2D tasks. Then, a neural network was fit to the behavioral data to examine how the lesions affected categorization. The results suggest that the PL facilitates category learning by maintaining attention to category-relevant information and updating category representations

    Selective attention in rat visual category learning

    Get PDF
    A prominent theory of category learning, COVIS, posits that new categories are learned with either a declarative or procedural system, depending on the task. The declarative system uses the prefrontal cortex (PFC) to learn rule-based (RB) category tasks in which there is one relevant sensory dimension that can be used to establish a rule for solving the task, whereas the procedural system uses corticostriatal circuits for information integration (II) tasks in which there are multiple relevant dimensions, precluding use of explicit rules. Previous studies have found faster learning of RB versus II tasks in humans and monkeys but not in pigeons. The absence of a learning rate difference in pigeons has been attributed to their lacking a PFC. A major gap in this comparative analysis, however, is the lack of data from a nonprimate mammalian species, such as rats, that have a PFC but a less differentiated PFC than primates. Here, we investigated RB and II category learning in rats. Similar to pigeons, RB and II tasks were learned at the same rate. After reaching a learning criterion, wider distributions of stimuli were presented to examine generalization. A second experiment found equivalent RB and II learning with wider category distributions. Computational modeling revealed that rats extract and selectively attend to category-relevant information but do not consistently use rules to solve the RB task. These findings suggest rats are on a continuum of PFC function between birds and primates, with selective attention but limited ability to utilize rules relative to primates

    Selective attention in rat visual category learning

    Get PDF
    A prominent theory of category learning, COVIS, posits that new categories are learned with either a declarative or procedural system, depending on the task. The declarative system uses the prefrontal cortex (PFC) to learn rule-based (RB) category tasks in which there is one relevant sensory dimension that can be used to establish a rule for solving the task, whereas the procedural system uses corticostriatal circuits for information integration (II) tasks in which there are multiple relevant dimensions, precluding use of explicit rules. Previous studies have found faster learning of RB versus II tasks in humans and monkeys but not in pigeons. The absence of a learning rate difference in pigeons has been attributed to their lacking a PFC. A major gap in this comparative analysis, however, is the lack of data from a nonprimate mammalian species, such as rats, that have a PFC but a less differentiated PFC than primates. Here, we investigated RB and II category learning in rats. Similar to pigeons, RB and II tasks were learned at the same rate. After reaching a learning criterion, wider distributions of stimuli were presented to examine generalization. A second experiment found equivalent RB and II learning with wider category distributions. Computational modeling revealed that rats extract and selectively attend to category-relevant information but do not consistently use rules to solve the RB task. These findings suggest rats are on a continuum of PFC function between birds and primates, with selective attention but limited ability to utilize rules relative to primates

    Does Presentation Format Influence Visual Size Discrimination in Tufted Capuchin Monkeys (Sapajus spp.)?

    Get PDF
    Most experimental paradigms to study visual cognition in humans and non-human species are based on discrimination tasks involving the choice between two or more visual stimuli. To this end, different types of stimuli and procedures for stimuli presentation are used, which highlights the necessity to compare data obtained with different methods. The present study assessed whether, and to what extent, capuchin monkeys\u27 ability to solve a size discrimination problem is influenced by the type of procedure used to present the problem. Capuchins\u27 ability to generalise knowledge across different tasks was also evaluated. We trained eight adult tufted capuchin monkeys to select the larger of two stimuli of the same shape and different sizes by using pairs of food items (Experiment 1), computer images (Experiment 1) and objects (Experiment 2). Our results indicated that monkeys achieved the learning criterion faster with food stimuli compared to both images and objects. They also required consistently fewer trials with objects than with images. Moreover, female capuchins had higher levels of acquisition accuracy with food stimuli than with images. Finally, capuchins did not immediately transfer the solution of the problem acquired in one task condition to the other conditions. Overall, these findings suggest that - even in relatively simple visual discrimination problems where a single perceptual dimension (i.e., size) has to be judged - learning speed strongly depends on the mode of presentation

    Graphs in molecular biology

    Get PDF
    Graph theoretical concepts are useful for the description and analysis of interactions and relationships in biological systems. We give a brief introduction into some of the concepts and their areas of application in molecular biology. We discuss software that is available through the Bioconductor project and present a simple example application to the integration of a protein-protein interaction and a co-expression network

    Discovery and Expansion of Gene Modules by Seeking Isolated Groups in a Random Graph Process

    Get PDF
    BACKGROUND: A central problem in systems biology research is the identification and extension of biological modules-groups of genes or proteins participating in a common cellular process or physical complex. As a result, there is a persistent need for practical, principled methods to infer the modular organization of genes from genome-scale data. RESULTS: We introduce a novel approach for the identification of modules based on the persistence of isolated gene groups within an evolving graph process. First, the underlying genomic data is summarized in the form of ranked gene-gene relationships, thereby accommodating studies that quantify the relevant biological relationship directly or indirectly. Then, the observed gene-gene relationship ranks are viewed as the outcome of a random graph process and candidate modules are given by the identifiable subgraphs that arise during this process. An isolation index is computed for each module, which quantifies the statistical significance of its survival time. CONCLUSIONS: The Miso (module isolation) method predicts gene modules from genomic data and the associated isolation index provides a module-specific measure of confidence. Improving on existing alternative, such as graph clustering and the global pruning of dendrograms, this index offers two intuitively appealing features: (1) the score is module-specific; and (2) different choices of threshold correlate logically with the resulting performance, i.e. a stringent cutoff yields high quality predictions, but low sensitivity. Through the analysis of yeast phenotype data, the Miso method is shown to outperform existing alternatives, in terms of the specificity and sensitivity of its predictions

    Labelling and Family Resemblance in the discrimination of polymorphous categories by pigeons

    Get PDF
    publication-status: Acceptedtypes: Article© 2011 Springer Verlag. This is a post print version of the article published in Animal Cognition, 2011, 14 (1), pp 21-34. The final publication is available at link.springer.comTwo experiments examined whether pigeons discriminate polymorphous categories on the basis of a single highly predictive feature or overall similarity. In the first experiment, pigeons were trained to discriminate between categories of photographs of complex real objects. Within these pictures, single features had been manipulated to produce a highly salient texture cue. Either the picture or the texture provided a reliable cue for discrimination during training, but in probe tests, the picture and texture cues were put into conflict. Some pigeons showed a significant tendency to discriminate on the basis of the picture cue (overall similarity or family resemblance), whereas others appeared to rely on the manipulated texture cue. The second experiment used artificial polymorphous categories in which one dimension of the stimulus provided a completely reliable cue to category membership, whereas three other dimensions provided cues that were individually unreliable but collectively provided a completely reliable basis for discrimination. Most pigeons came under the control of the reliable cue rather than the unreliable cues. A minority, however, came under the control of single dimensions from the unreliable set. We conclude that cue salience can be more important than cue reliability in determining what features will control behavior when multiple cues are available

    The dynamics and neural correlates of audio-visual integration capacity as determined by temporal unpredictability, proactive interference, and SOA

    Get PDF
    Over 5 experiments, we challenge the idea that the capacity of audio-visual integration need be fixed at 1 item. We observe that the conditions under which audio-visual integration is most likely to exceed 1 occur when stimulus change operates at a slow rather than fast rate of presentation and when the task is of intermediate difficulty such as when low levels of proactive interference (3 rather than 8 interfering visual presentations) are combined with the temporal unpredictability of the critical frame (Experiment 2), or, high levels of proactive interference are combined with the temporal predictability of the critical frame (Experiment 4). Neural data suggest that capacity might also be determined by the quality of perceptual information entering working memory. Experiment 5 supported the proposition that audio-visual integration was at play during the previous experiments. The data are consistent with the dynamic nature usually associated with cross-modal binding, and while audio-visual integration capacity likely cannot exceed uni-modal capacity estimates, performance may be better than being able to associate only one visual stimulus with one auditory stimulus

    Therapeutic lung lavages in children and adults

    Get PDF
    BACKGROUND: Pulmonary alveolar proteinosis (PAP) is a rare disease, characterized by excessive intra-alveolar accumulation of surfactant lipids and proteins. Therapeutic whole lung lavages are currently the principle therapeutic option in adults. Not much is known on the kinetics of the wash out process, especially in children. METHODS: In 4 pediatric and 6 adult PAP patients 45 therapeutic half lung lavages were investigated retrospectively. Total protein, protein concentration and, in one child with a surfactant protein C mutation, aberrant pro-SP-C protein, were determined during wash out. RESULTS: The removal of protein from the lungs followed an exponential decline and averaged for adult patients 2 – 20 g and <0.5 to 6 g for pediatric patients. The average protein concentration of consecutive portions was the same in all patient groups, however was elevated in pediatric patients when expressed per body weight. The amount of an aberrant pro-SP-C protein, which was present in one patient with a SP-C mutation, constantly decreased with ongoing lavage. Measuring the optical density of the lavage fluid obtained allowed to monitor the wash out process during the lavages at the bedside and to determine the termination of the lavage procedure at normal protein concentration. CONCLUSION: Following therapeutic half lung lavages by biochemical variables may help to estimate the degree of alveolar filling with proteinaceous material and to improve the efficiency of the wash out, especially in children
    • …
    corecore